Department Calendar of Events

LLE: The Role and Contribution of Engineers in Addressing Global Nutrition Challenges – Experiences From the Field (Rizwan Yusufali, UNICEF) @ WB116
Mar 15 @ 12:00 pm – 1:00 pm

Rizwan Yusufali, UNICEF

Host: Prof. Levente Diosady

From urban centers to remote corners of Earth, the depths of the oceans to space, humanity has always sought to transcend barriers, overcome challenges, and create opportunities that improve life on our part of the universe. One such challenge is securing good nutrition for the global population, many of whom have just a few dollars a day to secure a nutritious meal. Nutrition is a ‘Grand Challenge’ affecting the world’s most vulnerable populations and needs a multidisciplinary approach and a ‘new breed’ of Engineers that can transcend across multiple disciplines and apply their analytical and solution-oriented thinking. While Engineers have and continue to develop ingenious solutions and technologies to make food healthier and safer, global rates of malnutrition remain unacceptably high in many countries resulting in productivity losses, morbidity and mortality. The aim of my lecture is to share some of my experiences and perspectives that have enabled me to make a positive impact on nutrition with the hope that this may inspire engineering researchers and students to solve the world’s most stubborn problems.

Rizwan Yusufali is a Nutrition Specialist at UNICEF providing technical and advisory support on scaling up essential nutrition interventions with a specific focus on food fortification and food systems. Mr. Yusufali has held several positions in program management, operations and product development and has extensive experience in food fortification. Prior to joining UNICEF, Mr. Yusufali was the Regional Director for the Strengthening African Processors of Fortified Foods program at TechnoServe providing direction, leadership and technical support covering Nigeria, Kenya and Tanzania. He has also worked for the World Food Programme (WFP), Global Alliance for Improved Nutrition (GAIN), Micronutrient Initiative (MI) managing programs in several countries across Africa and Asia. Mr. Yusufali has a Masters Degree in Chemical Engineering from the University of Toronto and has several publications on food fortification.


View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber ( or Sophia Lu (

LLE: Mapping and Engineering Microbiomes of the Mammalian Gut and in Soil Environments (Harris Wang, Columbia University) @ WB116
Mar 22 @ 12:00 pm – 1:00 pm

Harris Wang, Columbia University

Host: Prof. Chris Lawson

Microbes that live in soil are responsible for a variety of key decomposition and remediation activities in the biosphere. Microbes that colonize the gastrointestinal tract play important roles in host metabolism, immunity, and homeostasis. Better tools to study and alter these microbiomes are essential for unlocking their vast potential to improve human health and the environment. This talk will describe our recent efforts to develop next-generation tools to study and modify microbial communities. Specifically, I will discuss new platforms for automated microbial culturomics, techniques to genetically engineer complex microbial consortia and methods for biocontainment. These emerging capabilities provide a foundation to accelerate the development of microbiome-based products and therapies.


Harris Wang is an Associate Professor at Columbia University jointly appointed in the Department of Systems Biology and the Department of Pathology and Cell Biology. Dr. Wang received his B.S. degrees in Mathematics and Physics from MIT and his Ph.D. in Biophysics from Harvard University. His research group mainly develops enabling genomic technologies to characterize the mammalian gut microbiome and to engineer these microbes with the capacity to monitor and improve human health. Dr. Wang is an Investigator of the Burroughs Wellcome Fund and the recipient of numerous awards, including the Vilcek Prize or Creative Promise in Biomedical Science, NIH Director’s Early Independence Award, NSF CAREER, Sloan Research Fellowship, and the Presidential Early Career Award for Scientists and Engineers (PECASE) from President Obama, which is “the highest honor bestowed by the United States Government on science and engineering professionals in the early stages of their independent research careers.”

View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber ( or Sophia Lu (

I Build AI’s Because I Don’t Trust Myself @ WB215/Teams
Mar 30 @ 10:30 am – 11:30 am

Jason Hattrick-Simpers

Professor Jason Hattrick-Simpers
Department of Material Science & Engineering
University of Toronto


The past few years have been marked by a literal exponential increase in the number of publications with the words “machine learning,” “artificial intelligence,” and “deep learning” in their titles. These tools now pervade materials science workflows and have been integrated with experimental/computational automation to form autonomous research agents, capable of planning, executing, and analyzing entire scientific campaigns. Lurking beneath the surface truly amazing accomplishments are serious questions around trust, bias, reproducibility, and equity which will ultimately determine the overall adoption of AI and autonomy by the broader community. Here, I will speak to recent work done by our group to systematically (1) remove human bias from experimental data analysis, (2) identify and actively remediate bias in large datasets , and (3) foster and promote a community of equity and reproducibility within the materials AI sub-domain. Specific case studies will center around standard electrochemical impedance spectroscopy analysis, building stability model predictions for complex alloys from large theoretical datasets, and maximizing the amount of information extracted from imaging techniques.


Jason Hattrick-Simpers is a Professor in the Department of Materials Science and Engineering, University of Toronto, and a Research Scientist at CanmetMATERIALS. He graduated with a B.S. in Mathematics and a B.S. in Physics from Rowan University and a Ph.D. in Materials Science and Engineering from the University of Maryland. His research interests focus on using AI and experimental automation to discover new functional alloys and oxides that can survive in extreme environments and materials for energy conversion and storage.

Microsoft Teams meeting:

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 296 827 043 532
Passcode: mRNTRW

Download Teams | Join on the web

Or call in (audio only)

+1 647-794-1609,,176390674#   Canada, Toronto

Phone Conference ID: 176 390 674#

Find a local number | Reset PIN

Learn More | Meeting options

LLE: Education in Engineering Lecture: New Directions for Chemical Engineering (Eric Kaler, Case Western Reserve University) @ WB116
Mar 31 @ 11:00 am – 12:00 pm

Education in Engineering Lecture

Co-hosted with the Institute for Studies in Transdisciplinary Engineering Education & Practice (ISTEP)

Eric Kaler, Case Western Reserve University

Host: Prof. Krishna Mahadevan

I will describe the outcomes of a US National Academies (NA) study I chaired called “New Directions for Chemical Engineering.”  As described by the NA Press, it “details a vision to guide chemical engineering research, innovation, and education over the next few decades. This report calls for new investments in U.S. chemical engineering and the interdisciplinary, cross-sector collaborations necessary to advance the societal goals of transitioning to a low-carbon energy system, ensuring our production and use of food and water is sustainable, developing medical advances and engineering solutions to health equity, and manufacturing with less waste and pollution. The report also calls for changes in chemical engineering education to ensure the next generation of chemical engineers is more diverse and equipped with the skills necessary to address the challenges ahead.

Eric W. Kaler is the president of Case Western Reserve University. He joined Case Western Reserve in July 2021 from the University of Minnesota, where he served as university president for eight years. An accomplished chemical engineer and visionary university leader, Kaler’s career in higher education spans more than 40 years. He has significant expertise in elevating research, expanding fundraising, forming collaborative partnerships, encouraging entrepreneurship, and advocating for diversity, equity and inclusion.

Kaler studies surfactant and colloid science and engineering. His work on these ‘complex fluids’ has implications for many processes and products, ranging from pharmaceutical formulations to personal care products to enhancing oil-field production. He has published over 200 papers and holds 10 U.S. Patents and is a member of the National Academy of Engineering (2010). He was elected as a fellow of the American Academy of Arts and Sciences (2014) for his leadership in engineering and in higher education. He was a member of the inaugural class of the National Academy of Inventors (2012). He also is a fellow of the American Association for the Advancement of Science and the American Chemical Society.

Born in Vermont, Kaler is a first-generation college graduate who earned his bachelor’s degree in chemical engineering from the California Institute of Technology and his PhD in chemical engineering from the University of Minnesota.


View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber ( or Sophia Lu (

6th ChemE Exhibition & 37th Dinner @ Delta Chelsea Hotel
Mar 31 @ 4:30 pm – 9:00 pm

Panel Discussion: Envisioning the Future of Chemical Engineering Education

Confirmed Panelists:
Eric Kaler, President, Case Western Reserve University
Ajay Kochhar (ChemE 1T3), President & CEO, Co-Founder, Li-Cycle
Sandra Odendahl (ChemE MASc 9T0), Senior Vice President & Head of Sustainability and Diversity, BDC
Michael Sefton (ChemE 7T1), University Professor, University of Toronto

Rossetti Room
4:30pm – 5:30pm

The panel discussion will also be livestreamed through Zoom (registration not required):
Meeting link:
Meeting ID: 835 5686 5393
Passcode: ChemE2023

Poster & Cocktail Reception

Mountbatten Salon
5:30pm – 7:00pm
(Free, cash bar)

37th Dinner

Churchill Ballroom
7:00pm – 9:30pm

All events will be held at the Chelsea Hotel, 33 Gerrard St W. REGISTRATION HAS NOW CLOSED!

CHECK OUT THIS YEAR’S SPONSORS! If you wish to become a sponsor, email

LLE: An Integrated Multi-scale Modeling Approach for 13C Metabolic Flux Analysis in Microbial Communities (Maciek Antoniewicz, University of Michigan) @ WB116
Apr 5 @ 12:00 pm – 1:00 pm

Maciek Antoniewicz, University of Michigan

Host: Prof. Chris Lawson

Syntrophy, or cross-feeding, is the co-existence of two or more microbes whereby one feeds off the products of the other. Recently, we have developed an integrated multi-scale flux modeling approach that allows us, for the first time, to dissect interactions in microbial communities using 13C tracers. Specifically, to quantify metabolism and identify cross-feeding interactions we have developed a compartmental multi-scale 13C metabolic flux analysis (13C-comMFA) approach that quantifies metabolic fluxes for multiple cell populations in microbial communities without separation of cells or proteins. In this presentation, I will illustrate our investigations of metabolic interactions between E. coli auxotrophs that are unable to grow on glucose in minimal medium by themselves, but can grow on glucose when cultured together. Using our novel 13C-comMFA flux analysis tool we have quantified metabolic interactions (i.e. metabolite cross-feeding) in four distinct synthetic E. coli co-cultures. We also applied adaptive laboratory evolution to elucidate how syntrophic interactions evolve and are strengthened through adaptive co-evolution of co-cultures. Overall, the methods we have developed for studying microbial communities enable a broad new area of investigations, allowing us and others to dissect complex microbial systems that are of significant importance in biology but cannot be investigated with current tools. More broadly, by better understanding syntrophic relationships at the genetic, molecular, cellular and systems levels we are generating new knowledge on microbial syntrophy that enables us to ensemble synergistic interactions in engineered microbial communities for novel applications.

Maciek R. Antoniewicz is a Full Professor of Chemical Engineering at the University of Michigan. Dr. Antoniewicz earned his B.S. and M.S. degrees in Chemical Engineering from Delft University of Technology (2000), and his Ph.D. in Chemical Engineering from the Massachusetts Institute of Technology (2006). After graduating he performed post-doctoral research at the DuPont Company. Dr. Antoniewicz started as an Assistant Professor in 2007 at the University of Delaware and was promoted to Associate Professor in 2013 and to Full Professor in 2017. In 2019, Dr. Antoniewicz moved to the University of Michigan.

Dr. Antoniewicz is an expert and a pioneer in the field of 13C-metabolic flux analysis (13C-MFA). Dr. Antoniewicz has received many awards for his research accomplishments, including the DuPont Young Professor Award (2008), the James E. Bailey Young Investigator Award in Metabolic Engineering (2008), the NSF CAREER Award (2011), and the Biotechnology and Bioengineering Daniel I.C. Wang Award (2015). In 2018, Dr. Antoniewicz was elected as a Fellow of the American Institute for Medical and Biological Engineering (AIMBE). His current interests include elucidating syntrophic interactions in microbial communities, adaptive laboratory evolution, optimizing CHO cell cultures for therapeutic protein production, and metabolic engineering of microbes for enhanced utilization of renewable substrates for production of value-added chemicals.


View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber ( or Sophia Lu (