CRYOGENICS – GAS LAW CALCULATION (REQUIRED FOR USE OF LIQUID NITROGEN IN EXPERIMENTS)

Worst-case Scenario in Oxygen depletion by liquid nitrogen spill: the entire contents of the Dewar or storage tank are lost to the room immediately after spilling (100% of the vessel contents).

Example Calculation:

 V_N = Total volume loss of Liq. N_2 (100%) = 1.0

- V_R = Total room volume (m³)
- V_D = Dewar or Vessel capacity (litres)
- F_G = Gas Factor for N₂ (683 for N₂)
- 0.21 = Normal concentration of O₂ in air (21%)

 V_{OX} = Total volume of O₂ in room (m³) = 0.21 x {V_R - [(V_N x V_D x F_G)/1000]}

 C_{OX} = Total concentration of O₂ remaining in room after 100% L. N₂ container spill = 100 x V_{OX}/V_R

For a room size $71m^3$, and a 100% Liq. N₂ spill of 41 litres:

The total vol. of O₂ in room = V_{OX} = 0.21 x {71 - [$(1.0 \times 41 \times 683)/1000$]} = 9.03 m³

Total conc. of O_2 remaining in room = C_{OX} = 100 x 9.03/71 = 12.71%

Requirements: In a worst-case scenario where all of the Liq. N_2 container spills, the total concentration of O_2 remaining in the room must be 20% or more. Otherwise the following is required:

- Room equipped with O₂ detector that sounds an alarm when the O₂ concentration falls below 20%
- Warning signs are displayed both on door to lab and next to L. N₂ dewar or dispenser
- Proper mechanical/non-mechanical ventilation must be installed within lab

Recommended alternative action: Reduce the size/volume of the Liq. N_2 dewar, to ensure that the O_2 concentration exceeds the minimum, and an oxygen-deficient atmosphere is avoided.

Your Calculation:

For a room size X m^3 , and a 100% Liq. N_2 spill of Y litres:

The total vol. of O₂ in room = V_{OX} = 0.21 x { $X - [(1.0 \times Y \times 683)/1000]$ } = $Z \text{ m}^3$

Total conc. of O₂ remaining in room = C_{OX} = 100 x Z/X = ???? %