BioZone Workshop Series: Bioinformatic Analysis of 16S rRNA Amplicon Sequencing Data

CREATE for BioZone will host a free hands-on Bioinformatic Analysis Workshop Series on June 14, 16, 21 and 23. The four-day workshop, featuring instructors Dr. Courtney Toth and Dr. Camilla Nesbø, will provide an overview of the tools and techniques used in the bioinformatic analysis of 16S rRNA amplicon sequencing data. Please mark your calendar and register by June 10.

Day 1 (June 14, 3:30-5:00pm ET)
Basic principles of amplicon sequencing.
Introduction to command line for bioinformatics.

Day 2 (June 16, 3:30-5:00pm ET)
Running QIIME 2, a bioinformatics platform for processing microbial sequencing data.
A practice dataset will be provided.

Day 3 (June 21, 3:30-5:00pm ET)
Running PhyloSeq, a bioinformatics platform for analysis and graphical display of microbial sequencing data.

Day 4 (June 23, 3:30-5:00pm ET)
BioZone choice: What bioinformatics tools and/or graphical displays would you like to learn more about?

Cost: Free
Venue: In-person and virtual (Teams)
Register by June 10:

All BioZone members including students, postdocs, staff and principal investigators interested in learning how to do bioinformatic analysis of sequencing data are encouraged to attend. We look forward to your participation!

Questions? Email us at: or

5th ChemE Exhibition & 36th Dinner

SAVE THE DATE! The 5th ChemE Exhibition & 36th Dinner will be held at the Delta Chelsea Hotel located at 33 Gerrard St W. Invitations have been sent to faculty, staff, students, alumni, and industry partners. If you have questions regarding how to register, please email

2022 ChemE Spring Convocation

Graduating students, faculty, and staff are invited to ChemE’s Spring Convocation Reception from 11AM to 1:30PM at the Faculty Club. Registration details have been sent through email. If you have questions, please email

Our Spring Convocation Ceremony will run from 2:30PM to 4PM. Please visit for more information.

SOCAAR Seminar – Observing global fine-scale changes in ambient NO2 during COVID-19 lockdowns using satellites

Join SOCAAR at their next seminar on Wednesday, April 6th from 3pm-4pm!

Observing global fine-scale changes in ambient NO2 during COVID-19 lockdowns using satellites

Matthew Cooper
Physical Science Officer
Environment and Climate Change Canada

Nitrogen dioxide (NO2) is an important contributor to air pollution with serious health
effects. Many reports have shown that NO2 concentrations decreased in 2020 during COVID19 lockdowns, but these studies are limited by the availability of air quality monitoring
globally. In this talk, I will show how we use satellite observations to infer global fine
resolution (~1km) ground-level NO2 concentrations. Using these observations, we find that
mean NO2 concentrations are ~30% lower in countries with strict COVID-19 lockdowns than
in those without. I will also present case studies that compare lockdown-driven changes to
long-term NO2 trends, and show how the sensitivity of NO2 to lockdowns varied across cities,
countries, and emissions sectors.

Join via Microsoft Teams on your computer or mobile app

Click here to join the meeting

Or call in (audio only)
+1 647-794-1609,,612523657#   Canada, Toronto
Phone Conference ID: 612 523 657#
Find a local number | Reset PIN
Learn More | Meeting options

Microbes are the same but different: Incorporating microbial ecophysiology into environmental bioprocess engineering

BioZone will be hosting Professor Ryan Ziels, from the Department of Civil Engineering, at the University of British Columbia on Thursday, March 31st from 3 pm – 4:30 pm.

Speaker Bio

Dr. Ryan Ziels is an Assistant Professor within the Department of Civil Engineering at the University of British Columbia, with appointments in the Genome Sciences and Technology Training Program and the Environmental Engineering Program at UBC. His research focuses on the role of microbial communities in converting waste materials into high-value resources, such as bioenergy, nutrients, and clean water, to promote a circular economy. He combines multi-omic sequencing with biological process modeling and fundamental engineering design to elucidate mechanisms of nutrient and carbon flow within engineered microbiomes. Recently, his research has focused on new approaches to map microbial metabolic networks within sustainable environmental biotechnologies by quantitatively measuring in situ function and activity.

Join Zoom Meeting ID: 839 7592 7179Passcode: 054682

For more information about the series:Contact Sofia Bonilla; or Olan Raji;

Sustainable Plastics vs Sustainable Systems

Sustainable Plastics vs Sustainable Systems
Presented by: Prof. Michael Shaver (University of Manchester)
Friday, March 11th, at 12pm EST on Zoom

This talk will explore the complex nature of our plastic environment, the interdependency of plastics on our goals for lowering our carbon footprint and increasing our expected lifespan, while also showcasing our own work on how polymer chemistry has the opportunity to shape a new sustainable future by developing interdisciplinary solutions that work for all actors.

For more information, please see the event page:

SOCAAR Seminar: Bridging the gap between microbiology and chemistry in built environments

Bridging the gap between microbiology and chemistry in built environments

Prof. Sarah Haines, Assistant Professor
Department of Civil & Mineral Engineering
University of Toronto

We spend the majority of our time indoors where the built environment has important implications for human health, particularly for those with asthma. Asthma disproportionately impacts low-socioeconomic communities due to poor quality housing associated with mold and moisture exposure. One of the main exposures to mold in housing is through the resuspension of floor dust. Microbes grow in carpet dust at elevated relative humidity conditions and release microbial volatile organic compounds (mVOCs). However, we do not know how the influence of moisture may drive species composition and chemical emissions from microbes in dust and on common building materials. Understanding
these interactions in the indoor environment is the next frontier in environmental engineering and has the potential to lead to substantial improvements in public health.

Utilizing cutting edge techniques, my work has ranged from collecting dust in carpet from homes in Ohio to analyzing dust particles from the International Space Station. Ultimately, results from my work have demonstrated that microbial growth can be quantitatively modeled in buildings, and for the first time demonstrated interactions between chemicals and microbes in house dust under elevated relative humidity conditions. My future work will link climate change, social justice, and viruses to contribute to healthy indoor environments.

Microsoft Teams meeting:
Join on your computer or mobile app
Click here to join the meeting

Or call in (audio only)
+1 647-794-1609,,691691226#   Canada, Toronto

Phone Conference ID: 691 691 226#
Find a local number | Reset PIN

LLE: Nano-scale Characterizations of Ancient Mars Minerals and Earth Copper: Stories of Corrosion and Resilience (Desmond Moser, Western)

External members were required to register to receive the link and passcode. Registration closed at 9am on March 7.

Desmond Moser, Western

Host: Prof. Jane Howe

The characterization of long-lived minerals, including natural metal deposits of copper, and their corrosion behaviours is an area of shared interest among geo- and materials scientists. This is particularly true in regard to transdisciplinary efforts to improve the design of multi-barrier Deep Geological Repositories for spent nuclear fuel. Examples of our application of micro- and nano-characterization techniques (e.g. EBSD, SIMS, Atom Probe Tomography) will be presented for a range of geomaterials including > 4 billion-year-old weakly-radioactive minerals in Martian meteorites and 1 billion-year-old copper from Earth.


Professor Desmond Moser has spent most of his career unraveling the evolution of ancient planetary crusts using weakly radioactive and highly resilient microminerals. Increasingly his group is directing their expertise to help understand all aspects of the long-lived natural materials important to designing multi-barrier Deep Geological Repositories for spent nuclear fuel.

Prof. Moser conducts solid Earth and planetary science research using Western’s nationally unique Zircon and Accessory Phase Laboratory (ZAPLab). Micromineral crystal growth and deformation analysis (e.g. CL, EBSD) is integrated with field mapping, microchemical (EDS, WDS), petrologic and mass spectrometry measurements (radiogenic and stable isotopes) at Western and partner institutes. His active projects investigate meteorites, crustal cross-sections, kimberlite xenoliths, sedimentary basins and impact structures in the Americas, Africa and Europe. His ZAPLab team is advancing our knowledge of the timing and nature of processes that form and modify planetary crusts and ore deposits while advancing the growing sub-discipline of accessory mineral science.

View the complete 2021-22 LLE schedule


Questions? Please contact Delicia Ansalem, Communications Officer & External Relations Liaison

From Foods to Function: Research at the Food-Nutrition Interface

BioZone will be hosting Professor Amanda Wright, from the Department of Human Health and Nutritional Sciences, at the University of Guelph on Thursday, February 24th from 3 pm – 4:30 pm.


Functional foods deliver health benefits beyond basic nutrition. Natural health product (NHP) is the Canadian regulatory term for over-the-counter supplements that contain health-promoting molecules derived from foods, e.g., vitamins, minerals, herbals, probiotics. Together, these product categories encompass so much of the science and technology surrounding foods and nutrition. Our group works at the food-nutrition interface to support the evidence-basis for a variety of functional foods and NHPs. We have specialized interests in dietary lipids and in understanding how the structure of foods and food ingredients influences bioavailability and metabolic response, mediated by events in the gastrointestinal tract.

For example, what role does triacylglycerol crystallinity play in determining postprandial lipemia and what does this mean for saturated fatty acids? This talk will discuss our application of in vitro digestion and human research methods to relate emulsion properties to gastric microstructure, emptying, and postprandial satiety and lipemia (a risk factor for cardiometabolic diseases) to highlight the benefits of integrated food-nutrition research. Examples drawing on other functional foods will also be presented. Foods have always been functional. Focusing specifically on food structure and applying a physical property lens to what happens in the gastrointestinal tract paves the way for better understanding the nuanced relationships between foods and health, and ultimately to realize the potential for efficacious functional foods and NHPs.

Speaker Bio

Amanda Wright is an Associate Professor in the Department of Human Health and Nutritional Sciences, College of Biological Sciences at the University of Guelph. She holds a BSc (Food Science – University of Guelph, 1998) and PhD (Food Chemistry – University of Guelph, 2002) and completed postdoctoral training in Chemical Engineering and Applied Chemistry, University of Toronto). Amanda teaches in the Nutritional and Nutraceutical Sciences BSc Program and leads an interdisciplinary research group working at the food-nutrition interface. In particular, She has specialized expertise in dietary lipids and has held NSERC funding in this area since 1997. Amanda works to integrate advanced food analysis and in vitro digestion methods with human clinical trials for a variety of foods and natural health products. She also serves as Director of the Human Nutraceutical Research Unit (, a research and education vehicle at the University of Guelph which specializes in collaborative nutrition clinical trials.

For more information about the series:Contact Sofia Bonilla; or Olan Raji;


Join Zoom Meeting: ID: 839 7592 7179Passcode: 054682

© 2022 Faculty of Applied Science & Engineering