Cellulose Derived Thermoplastic Films: Development and Properties

April 28, 2023 @ 11:10 am – 12:10 pm

Jaan Kers
Professor of Wood Technology
Department of Materials and Environmental Technology,
Tallinn University of Technology
Tallinn, Estonia

Abstract: Cellulose, as the most common bio-polymer in the world, is an important resource for replacing fossil-based plastics. Cellulose is not intrinsically thermoplastic and must be chemically modified to achieve melting behaviour, expected by the plastics processing industry. The cellulose modification methods known so far are resource- and energy-intensive. This stimulates development of more sustainable routes. Therefore, TalTech is devising and demonstrating novel, sustainable esterification routes for preparing thermoplastic fatty acid cellulose esters (FACEs). Sustainability is ensured by minimizing the impact of the esterification agents, dissolution environment and modification methods. The cellulose esterification processes are based on chemically modified plant oils, new protonic ionic liquids, catalytic effects and the mechanochemical effect of reactive extrusion (REX). Certain components of the ionic liquids, the organic superbases can catalyze the esterification reactions. Plant oils and especially their production residues are valuable source of sustainable, fully bio-based esterification reagents. Their reactivity is improved by certain chemical modifications as well as catalytic and mechanochemical effects. The process can accept several primary or secondary sources of cellulose as dissolving pulp or microcrystalline cellulose. The study is accompanied by life cycle assessment of both production and products, including recycling of solvents and by-products, environmental durability of biopolymer films and recyclability. Research in REX experiments  with a recently installed laboratory scale pilot-line is directed by project PI Prof. Andres Krumme.

Biography: Professor Jaan Kers has received his BSc and MSc. in production technology from Tallinn University of Technology (TalTech) followed by the doctoral degree in Mechanical Engineering, also from TalTech (2006). He has 6 years of work experience in the private sector and over 17 years in the Department of Materials and Environmental Engineering at TalTech. He leads the research group of wood and composite materials. He is teaching wood science, wood- based products technology and biobased composites and he is program director of international Master’s curriculum, Technology of Wood, Plastics and Textiles“. His current research interests are in the areas of wood technology, wood modification, densification and natural fibre bio-composite materials. He has over 70 publications.

Host:  Professor D. Grant Allen, dgrant.allen@utoronto.ca;  Please contact Professor Allen if you’d like to arrange a meeting with Professor Kers.

Teams Link Meeting ID: Meeting ID: 269 921 957 030
Passcode: A37jiK