Abstract
Electrocatalysis has the potential to revolutionize the production of chemicals and consumer goods in an environmentally sustainable manner, by replacing traditional fossil fuel based processes with energy-efficient technologies powered by renewable electricity. This approach also holds great promise in addressing global challenges related to the remediation of per- and poly-fluoroalkyl substances (PFAS) water pollutants. To be successful, electrocatalytic processes must employ nonprecious nontoxic materials, utilize aqueous environments, consume minimal energy, and effectively eliminate harmful chemicals. Achieving functional electrocatalytic processes necessitates a comprehensive understanding of mechanisms and the strategic design of nanomaterials with controlled properties. In our approach, we employ pulsed laser in liquids synthesis for the development of nanocatalysts with controlled surface chemistries, to facilitate a quantitative mechanistic understanding of electrocatalytic processes, particularly within the anode microenvironment. For example, laser-made earth-abundant mixed-metal nanocatalysts on high-surface-area carbon supports selectively electrooxidized toluene to benzyl alcohol with unprecedentedly high activity. For PFAS remediation, we achieved complete defluorination of perfluorooctane sulfonate and GenX in aqueous electrolytes with laser-made bimetallic nanocatalysts. My group’s overarching goal is advanced design and fabrication of nanocatalysts for the electrocatalytic generation of oxidants and reductants from water, predicated on a detailed atomistic understanding of mechanisms and nanomaterials, with the ultimate goal of driving forward scalable sustainable solutions for chemical manufacturing and water remediation.
Speaker Bio
Astrid M. Müller is an Assistant Professor of Chemical Engineering at the University of Rochester since 2018. Prof. Müller earned a PhD in Physical Chemistry for work on ultrafast reaction dynamics at the Max Planck Institute of Quantum Optics. Her postdoctoral work centered on developing a fundamental understanding of laser–matter interactions. Her independent research focuses on pulsed laser in liquids synthesis of mixed-metal nanomaterials with controlled structural and electronic properties. This uniquely positions Prof. Müller’s group to quantitatively understand how nanocatalysts and electrocatalytic mechanisms impact the performance of nanomaterials in sustainable energy, green chemistry, and aqueous PFAS destruction applications.
Abstract
Our current linear way of producing chemicals and fuels is unsustainable. The petrochemical industry needs to transform from its current fossil basis to renewable resources for its energy and raw materials. Since chemicals and most fuels cannot be decarbonized in the literal sense, renewable carbon sources are needed to close the carbon cycle.
In this presentation, we will present our recent contributions towards a process systems engineering toolbox for developing a circular carbon economy. Circular carbon flows can be established by employing biomass, CO2, and waste recycling as carbon feedstock for chemical transformations. To optimize the required novel conversion processes, we integrate the molecular design of solvents and catalysts directly into process design. Design objectives are not only economics but also environmental impacts. For this purpose, methods are developed to predict environmental impacts for molecules designed in silico. The resulting optimized processes are then integrated into a bottom-up model of the carbon-based industry for chemicals and fuels. Thereby, trade-offs and potential synergies can be resolved between the renewable carbon sources biomass, CO2, and waste recycling. The industry-wide model allows us to identify promising pathways towards a circular carbon industry within the planetary boundaries.
Speaker Bio
André Bardow is the professor for energy & process systems engineering at ETH Zurich since 2020. Previously, he was a professor and head of the Institute of Technical Thermodynamics at RWTH Aachen University (2010-2020); director of the Institute for Energy and Climate Research (IEK-10) at Forschungszentrum Jülich, Germany (part-time, 2017-2022) and associate professor at TU Delft (2007-2010). He was a visiting professor at the University of California, Santa Barbara (2015/16). He earned his Ph.D. degree at RWTH Aachen University.
André is a fellow of the Royal Chemical Society and chairs the Technical Committee for Thermodynamics of VDI – The Association of German Engineers. He received the Recent Innovative Contribution Award of the CAPE-Working Party of the European Federation of Chemical Engineering (EFCE) in 2019, and the PSE Model-Based Innovation (MBI) Prize by Process Systems Enterprise in 2018. He was the first recipient of the Covestro Science Award. In 2009, he received the Arnold-Eucken-Award of the VDI-Society for Chemical Engineering (GVC). He is the recipient of RWTH’s “FAMOS für Familie” award for family-friendly leadership, and of teaching awards at RWTH and TU Delft.