Solid Waste Management: Engineers, Garbage, Public Policy, and Economics

When:
June 5, 2018 @ 11:00 am
2018-06-05T11:00:00-04:00
2018-06-05T11:15:00-04:00
Where:
Wallberg Building, WB215
200 College St
Toronto, ON M5T 3A1
Canada
Cost:
Free

Solid waste is the great unwanted byproduct of our modern society. Every Canadian is responsible, directly or indirectly, for creating about one tonne of solid waste per year. Solid waste is variable, heterogeneous, complex, and difficult and costly to manage by any means other than landfill. So, generally, government regulations or incentives are needed to drive innovation and make waste processing affordable.  In Canada these tend to be weak and inconsistent. One result is that Canadians still send 8 million tonnes per year of untreated organic solid waste to landfill. But all is not lost. This presentation is based upon the premise that organic solid waste can be anaerobically digested, using a process which is robust, versatile, and commercially realizable, despite the lack of supporting regulations. The products are digestate which can be composted, and biogas which can be converted into renewable energy. The critical steps are the elimination of almost all forms of mechanical pretreatment, and the employment of solid state anaerobic digestion. The technology, its origins, its performance at lab scale, its economic prospects and plans for commercialization are all described.

Nigel Guilford is a senior executive with a background in science and engineering and more than forty five years of experience, both domestic and international, in the development and commercialization of technology, and the development and operation of companies, both large and small, primarily in the environmental sector. His particular obsession is garbage, and extracting value from it in the form of renewable energy. Research for his Ph.D., completed in 2017, centred on new ways to anaerobically digest organic solid waste. For the past 26 years he has worked through his own consulting firm, Guilford and Associates Inc.


© 2022 Faculty of Applied Science & Engineering