Department Calendar of Events

Nov
30
Wed
LLE: How Can Research in Solar Energy Harvesting and Electrified Chemical Synthesis Contribute to Defossilization? (Ted Sargent, UofT) @ Virtual
Nov 30 @ 12:00 pm – 1:00 pm

External members are required to register to receive the link and passcode. Registration closed at 9am on November 28.

Ted Sargent, University of Toronto

Host: Prof. Jane Howe

While much progress has been made to scaling solar technologies in the field, there remains a massive further (costly, and energy-intensive) build to be completed to meet the global community’s ambitious net zero 2050 goals. Electrifying fuels and chemical synthesis is less far along, with the technologies for CO2 capture and utilization/upgrade still seeing ongoing development and the subject of fundamental scientific research. I will overview progress in each and then propose some targets and exciting directions for these intertwined topics.
_____

Ted Sargent holds the rank of University Professor at the University of Toronto where he is appointed in ECE. His publications have been cited 80,000 times. 145 of his works have been cited 145 times or more. www.light.utoronto.ca

 

View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber (jay.werber@utoronto.ca) or Sophia Lu (soph.lu@mail.utoronto.ca).

Dec
7
Wed
LLE: The Interactions of Airborne Particles with Surfaces (Cliff Davidson, Syracuse University) @ WB116
Dec 7 @ 12:00 pm – 1:00 pm

AEESP DISTINGUISHED LECTURE

Cliff Davidson, Syracuse University

Host: Prof. Elodie Passeport

Airborne particles exist in a wide variety of shapes, sizes, and chemical compositions. Some are natural, some are emitted from human activities, and others are formed in the atmosphere from gases. The gases can also be natural or anthropogenic. Once airborne, particles can be carried hundreds or even thousands of kilometers by wind before interacting with surfaces and depositing. In this talk, we examine the many ways in which atmospheric particles interact with surfaces of all kinds – natural vegetation, agriculture crops, landscaping, bare soil, water, snowfields, and urban hardscape surfaces. Such understanding is important when predicting the ultimate fate of particulate matter, whether the particles are inhaled and reach the human respiratory system, or whether they deposit on surfaces and cause damage. In all cases of deposition from the atmosphere, particles carried in the mainstream of the airflow must somehow be delivered to the quasi-laminar boundary layer adjacent to the surface, and must then traverse the boundary layer to rest on the surface. These two steps, as well as a third step in which particles rebound off the surface back into airflow, define the deposition process. For a large field of uniform vegetation less than a few meters in height, the wind field and boundary layer characteristics are well known, and deposition onto the vegetation can be predicted for a range of particle sizes and wind speeds. For more complex vegetation, such as a forest canopy, we usually resort to empirical methods to estimate deposition. For water surfaces, the hygroscopicity of the particles may need to be taken into account. Deposition on large lakes and the oceans must also account for wave action. Deposition to snow is complicated by the porous nature of the surface, and the fact that the surface area of individual snow crystals may influence the motions of very small particles. Finally, estimating deposition to buildings, roads, and other urban surfaces can be a challenge due to the changes in geometry of the surface over short distance scales. We discuss the special case of estimating particle deposition onto urban surfaces, including a large extensive green roof. Both modeling and measurement of particle interaction with surfaces is presented, and use of well-controlled experimental surfaces in wind tunnels as well as in the ambient atmosphere is discussed as a means of improving our understanding of the deposition process. A separate tutorial covering the airflow and rain impinging on a green roof in Syracuse, NY will be presented. The tutorial will explain the capabilities of a new website showing real-time data and archived data from the green roof. The website is intended for use in the classroom to help students understand the physical processes taking place on a green roof and the functions of a green roof.
_____

Cliff Davidson is the Thomas and Colleen Wilmot Professor of Engineering in the Department of Civil and Environmental Engineering at Syracuse University in Syracuse, NY. He also serves as Director of Environmental Engineering Programs, and Director of the Center for Sustainable Engineering. He received his B.S. in Electrical Engineering from Carnegie Mellon University, and his M.S. and Ph.D. degrees in Environmental Engineering Science from California Institute of Technology.  Following his PhD, he joined the Carnegie Mellon faculty in the Department of Civil Engineering (currently Civil and Environmental Engineering) and the Department of Engineering and Public Policy, where he served for 33 years. He joined Syracuse University in 2010. He has 140 publications in peer reviewed journals, and has given roughly 200 presentations at conferences, seminars, and workshops. He is a Fellow in four organizations: American Association for Aerosol Research (AAAR), the Association of Environmental Engineering and Science Professors (AEESP), the American Society of Civil Engineers (ASCE), and the Syracuse Center of Excellence in Environmental and Energy Systems. He served as President of AAAR in 1999-2000. Davidson’s long-term research interest is transport and fate of environmental pollutants, especially atmospheric acids and heavy metals. More recently, he has studied the role of engineers in sustainable development, focusing on green infrastructure. He has also studied changes in education needed to train an engineering workforce for the 21st century.

 

View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber (jay.werber@utoronto.ca) or Sophia Lu (soph.lu@mail.utoronto.ca).

Jan
25
Wed
LLE: Injectable and 3D-Printable Biomaterials for Tissue Engineering (Tony Mikos, Rice University) @ Virtual
Jan 25 @ 12:00 pm – 1:00 pm

External members are required to register to receive the link and passcode. Registration closes at 9am on January 23.

Tony Mikos, Rice University

Host: Prof. Molly Shoichet

Advances in biology, materials science, chemical engineering, computer science, and other fields have allowed for the development of tissue engineering, an interdisciplinary convergence science. Our laboratory has focused on the development and characterization of biomaterials-based strategies for the regeneration of human tissues with the goal of improving healthcare outcomes. In a collaborative effort with physicians, surgeons, and other scientists, we have produced new material compositions and three-dimensional scaffolds, and investigated combinations of biomaterials with cell populations and bioactive agents for their ability to induce tissue formation and regeneration. We have examined the effects of material characteristics, such as mechanical properties, topographical features, and functional groups, on cell behavior and tissue guidance, and leveraged biomaterials as drug delivery vehicles to release growth factors and other signals with spatial and temporal specificity. This presentation will review recent examples of injectable and 3D-printable biomaterials-based approaches for regenerative medicine applications and highlight emerging areas of growth, such as the use of tissue engineering to model tumor microenvironments for validation of cancer therapeutic discovery.
_____

Antonios G. Mikos is the Louis Calder Professor of Bioengineering and Chemical and Biomolecular Engineering at Rice University. His research focuses on the synthesis, processing, and evaluation of new biomaterials for use as scaffolds for tissue engineering, as carriers for controlled drug delivery, as non-viral vectors for gene therapy, and as platforms for disease modeling. His work has led to the development of novel orthopaedic, dental, cardiovascular, neurologic, and ophthalmologic biomaterials. He is the author of over 680 publications and the inventor of 32 patents. Mikos is a Member of the National Academy of Engineering, the National Academy of Medicine, the National Academy of Inventors, the Chinese Academy of Engineering, the Academia Europaea, and the Academy of Athens. He has been recognized by various awards including the Lifetime Achievement Award of the Tissue Engineering and Regenerative Medicine International Society-Americas, the Founders Award of the Society For Biomaterials, the Founders Award of the Controlled Release Society, the Acta Biomaterialia Gold Medal, and the Robert A. Pritzker Distinguished Lecturer Award of the Biomedical Engineering Society. He is a founding editor and editor-in-chief of the journal Tissue Engineering.

 

View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber (jay.werber@utoronto.ca) or Sophia Lu (soph.lu@mail.utoronto.ca).

Feb
1
Wed
LLE: The Role of Carbon Capture in Meeting Net-Zero Carbon Goals (Jennifer Wilcox, University of Pennsylvania) @ Virtual
Feb 1 @ 12:00 pm – 1:00 pm

External members are required to register to receive the link and passcode. Registration closes at 9am on January 30.

Jennifer Wilcox, University of Pennsylvania

Host: Prof. Jay Werber

President Biden has laid out a bold and ambitious goal of achieving net-zero carbon emissions in the U.S. by 2050.  The pathway to that target includes cutting total greenhouse gas emissions in half by 2030 and eliminating them entirely from the Nation’s electricity sector by 2035.  Investment in technology research, design, development, and deployment (RDD&D) will be required to achieve the president’s objectives, including investments in both carbon capture at point sources in addition to carbon dioxide removal approaches that target the accumulated pool of carbon in the atmosphere. Both will be required to achieve net-zero carbon emissions in time and they will require increased deployment in order to move down the cost curve. These efforts combined with effective policy will make these approaches economically viable.

These approaches are critical and they must be deployed in parallel.  Deployment of these technologies at the scale required will necessitate the use of resources including land, water, and in some cases, low-carbon energy, while ensuring the secure and reliable storage of carbon dioxide (CO2) on a timescale that impacts climate.  Therefore, CCS and CDR deployment must be implemented strategically in terms of regional goals and requirements.

The Office of Fossil Energy and Carbon Management will play an important role in the transition to net-zero carbon emissions by reducing the environmental impacts of fossil energy production and use – and helping decarbonize other hard-to abate sectors – through investments in technology solutions including CCS, direct air capture, and the deployment of carbon capture technologies to produce low-carbon products and fuel, including hydrogen.
_____

Professor Jennifer Wilcox, the Principal Deputy Assistant Secretary (Acting Assistant Secretary) in the Office of Fossil Energy and Carbon Management at DOE and is on leave as the Presidential Distinguished Professor of Chemical Engineering and Energy Policy at the University of Pennsylvania. In addition, as a senior fellow at the World Resources Institute, she led WRI’s Carbon Removal Program.

Having grown up in rural Maine, Dr. Wilcox has a profound respect and appreciation of nature. That appreciation permeates her work; she focuses on minimizing climate and environmental impacts of our dependence on fossil fuels.

Dr. Wilcox holds a Ph.D. in Chemical Engineering and an M.A. in Chemistry from the University of Arizona and B.A. in Mathematics from Wellesley College.  Dr. Wilcox’s research takes aim at the nexus of energy and the environment, developing both mitigation and adaptation strategies to minimize negative climate impacts associated with society’s dependence on fossil fuels. She has served on committees of the National Academy of Sciences and the American Physical Society to assess carbon capture methods and impacts on climate.  She is the author of the first textbook on carbon capture, Carbon Capture, published in March 2012. She co-edited the CDR Primer on carbon dioxide removal in 2021.

 

View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber (jay.werber@utoronto.ca) or Sophia Lu (soph.lu@mail.utoronto.ca).

Feb
8
Wed
LLE: Application of Genome-enabled Tools to Groundwater and Wastewater Samples. What Can We Learn? (Elizabeth Edwards, UofT) @ WB116
Feb 8 @ 12:00 pm – 1:00 pm

Elizabeth Edwards, University of Toronto

Host: Prof. Ramin Farnood

These are very exciting times in fundamental and applied environmental microbiology owing to significant advances in analytical tools and techniques to interrogate complex biological systems. These tools include affordable large-scale sequencing, quantitative DNA and RNA extraction and amplification tools, powerful microscopy, and proteomic analyses applicable to complex mixtures and small sample sizes. These techniques are enabling novel approaches and improved modelling to uncover fundamental metabolism, regulation, genetics, and interspecies metabolite transfer in complex microbial ecosystems. Specific applications related to my own research include biomethane production, wastewater treatment and surveillance, and soil and groundwater bioremediation. These processes rely on complex microbial communities that have defied traditional reductionist microbiological approaches. In this talk, I will discuss how combinations of modern genome-enabled tools have been used to monitor microbial communities and to decipher beneficial interactions in complex microbial consortia, whose activity is greater than the sum of their individual parts.

_____

Dr. Elizabeth Edwards holds Bachelor’s and Master’s degrees in Chemical Engineering from McGill University, Montreal, and a PhD degree (1993) in Civil and Environmental Engineering from Stanford University.  She is internationally known for her work on anaerobic bioremediation, the application of molecular biology and metagenomics to uncover novel microbial processes, and the transition of laboratory research into commercial practice to develop bioremediation and bioaugmentation strategies for groundwater pollutants. Dr. Edwards and her team were recognized with the 2009 NSERC Synergy Award for her highly successful partnership with Geosyntec, an international environmental consulting firm with whom she developed a microbial consortium called KB-1®. This commercially successful bioproduct marketed by SiREM labs in Guelph, ON, biodegrades two of the world’s most common and persistent groundwater pollutants, PCE (a common dry-cleaning agent) and TCE (a degreasing solvent), more quickly and at a lower cost than conventional methods. It has been used at over 700 sites around the world.

She is also the founding director of BioZone, a Centre for Applied Bioscience and Bioengineering Research at the University of Toronto and a Tier 1 Canada Research Chair in Anaerobic Biotechnology.  In 2016, she was awarded the Canada Council of the Arts Killam Prize in recognition of her outstanding career achievements and was appointed an Officer in the Order of Canada (Canada’s highest civilian honour) by the Canadian Governor General in 2020.

 

View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber (jay.werber@utoronto.ca) or Sophia Lu (soph.lu@mail.utoronto.ca).

Feb
15
Wed
LLE: Catalytic Gasification of Waste: Economic and Technical Feasibility (Josephine Hill, University of Calgary) @ WB116
Feb 15 @ 12:00 pm – 1:00 pm

Josephine Hill, University of Calgary

Host: Prof. Cathy Chin

“What if waste wasn’t?” is a question that requires careful consideration. Although it appears attractive to convert waste into valuable products, the technical and economic feasibility of any conversion process must be carefully analyzed. Gasification is a process in which solids and liquids are converted to gases but unlike combustion, in which the products are carbon dioxide and water, the products are a mixture of mainly hydrogen and carbon monoxide. This mixture can be used to run an engine to produce power or chemically converted to make other fuels in a Fischer-Tropsch synthesis process. Contaminants in the waste may impact the gasification process by deactivating catalysts, which are substances that increase the rates of reaction, and/or forming species that damage the process equipment (e.g., through corrosion). The additional units required to remove the contaminants, either up- or downstream may make the process economically unfavourable, as may the cost to transport the feed and products. This presentation will discuss the various waste streams available in Canada, the potential technical challenges of using these streams, and the techno-economic analysis of a few scenarios.

_____

Dr. Josephine Hill is a Professor in the Department of Chemical and Petroleum Engineering of the Schulich School of Engineering at the University of Calgary. She received her education and training at the University of Waterloo (BASc and MASc) and the University of Wisconsin–Madison (PhD) and worked for two years at Surface Science Western at the University of Western Ontario between her graduate degrees. Dr. Hill’s research is in the area of catalysis with applications to partial upgrading, gasification, and the conversion of solid waste materials, such as petroleum coke and biomass, into catalysts supports and activated carbon. She is currently the President of the Canadian Catalysis Foundation, the Vice-chair of the Chemical Institute of Canada, and an Editor of Applied Catalysis A: General. Her research and mentoring excellence have been recognized with many awards including the APEGA Research Excellence Summit Award, a Killam Annual Professorship, Engineers Canada Award for the Support of Women in the Engineering Profession, a Canada Research Chair, and the Canadian Catalysis Lectureship Award. She is a Fellow of The Engineering Institute of Canada, Chemical Institute of Canada, Canadian Academy of Engineering, and Engineers Canada.

 

View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber (jay.werber@utoronto.ca) or Sophia Lu (soph.lu@mail.utoronto.ca).

Mar
1
Wed
LLE: Multifunctional Polymer-based Materials for Medicine and Sustainable Products (Andreas Lendlein, University of Potsdam) @ WB116
Mar 1 @ 12:00 pm – 1:00 pm

Andreas Lendlein, University of Potsdam

Host: Prof. Frank Gu

Functionalization of materials aims at predetermining their behavior and fate in application relevant system environments. Various chemistry-based approaches are established such as covalent coupling of bioactive molecules to foster their interaction with cells or incorporation of easily cleavable bonds to gain degradability. The shape-memory effect is an example for a function, which can be implemented in polymers by physical manipulation. As this memory can be recalled, deleted or changed, this process is named programming. Morphologies of porous materials and geometrical arrangements in multimaterial systems can serve as design criteria for structural functions or dynamic behaviors as required for actuators. The targeted design of multifunctional polymeric materials will be illustrated for medical applications and sustainable products. A perspective on the potential of digital methods to predict the functional behavior of polymers, to support the design of devices and enable their fabrication will be given.
_____

Dr. Andreas Lendlein received his doctoral degree in Material Science from Swiss Federal Institute of Technology (ETH) in Zürich, Switzerland. His research interests comprise material functions by design and implementation of multifunctionality in polymer-based materials for bioinstructive implants, controlled drug release systems, healthcare technologies and soft robotics. Dr. Lendlein published 747 papers, is an inventor on 338 patents / patent applications, and received 23 awards for scientific and entrepreneurial achievements including 2022 MRS Communications Lecture Award. He is elected fellow of Materials Research Society (2021), American Institute for Medical and Biological Engineering (2021) & Controlled Release Society (2020), founding Editor-in-Chief of the journal Multifunctional Materials and serves on the Executive Advisory Board of Wiley-VCH´s Macromolecular Journals.

 

View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber (jay.werber@utoronto.ca) or Sophia Lu (soph.lu@mail.utoronto.ca).

Mar
8
Wed
LLE: Process Systems Engineering Approaches Towards Sustainable Solutions: Path to Circular Economy (Marianthi Ierapetritou, University of Delaware) @ WB116
Mar 8 @ 12:00 pm – 1:00 pm

Marianthi Ierapetritou, University of Delaware

Host: Prof. Krishna Mahadevan

The growing concerns over global warming and environmental issues motivate the research on replacing oil-based feedstocks with biomass raw material for chemical and fuel production. This however comes with a number of challenges as the new technologies have to compete with the fossil based mature processes to ensure economic viability and market competitiveness. Moreover, life cycle analysis is not always in favor of the “green” solutions depending on the pathway explored.

Optimization of the biomass feed splitting among alternative pathways considering their economic and environmental impacts can be thus explored to discover the best available routes and determine the optimal mix of the value-added products. Hence, the integrated biorefinery is proposed to combine different conversion technologies and fully utilize all biomass components using the superstructure optimization framework. In addition to selecting the most economical and sustainable feedstock-technology-product combinations, the integrated biorefinery strategy can also include process flexibility to adjust its production in the volatile chemical market.

Acknowledging the increasing market competition, environmental concerns, and uncertainty in price and transportation times, there is a growing interest in achieving modularization, design standardization, and process intensification for biomass processing. The integration of modular designs within the existing supply chain could be challenging. Supply chain networks have become more prominent, complex, and difficult to manage, especially considering the multitude of risks and uncertainty that may manifest. In this talk, I will also touch upon the work in our group towards developing a supply chain model that aids decision-making addressing the complexities of a modular infrastructure and provide some ideas to deal with disruptions by considering both proactive and reactive strategies.
_____

Marianthi Ierapetritou is the Bob and Jane Gore Centennial Chair Professor in the Department of Chemical and Biomolecular Engineering at University of Delaware. Prior to that she has been a Distinguished Professor in the Department of Chemical and Biochemical Engineering at Rutgers University. During the last year at Rutgers University she led the efforts of the university advancing the careers in STEM for women at Rutgers as an Associate Vice President of the University.

Dr. Ierapetritou’s research focuses on the following areas: 1) process operations; (2) design and synthesis of flexible production systems with emphasis on pharmaceutical manufacturing; 3) energy and sustainability process modeling and operations; and 4) modeling of biopharmaceutical production. Her research is supported by several federal (FDA, NIH, NSF, ONR, NASA, DOE) and industrial (BMS, J&J, GSK, PSE, Bosch, Eli Lilly) grants.

Among her accomplishments are the appointment as the Gore Centennial Professor in 2019, the promotion to distinguished professor at Rutgers University in 2017, the 2016 Computing and Systems Technology (CAST) division Award in Computing in Chemical Engineering which is the highest distinction in the Systems area of the American Institute of Chemical Engineers (AIChE), the Award of Division of Particulate Preparations and Design (PPD) of The Society of Powder Technology, Japan; the Outstanding Faculty Award at Rutgers; the Rutgers Board of Trustees Research Award for Scholarly Excellence; and the prestigious NSF CAREER award. She has served as a Consultant to the FDA under the Advisory Committee for Pharmaceutical Science and Clinical Pharmacology, elected as a fellow of AICHE and as a Director in the board of AIChE. She has more than 290 publications and has been an invited speaker to numerous national and international conferences.

Dr. Ierapetritou obtained her BS from The National Technical University in Athens, Greece, her PhD from Imperial College (London, UK) in 1995 and subsequently completed her post-doctoral research at Princeton University (Princeton, NJ).

 

View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber (jay.werber@utoronto.ca) or Sophia Lu (soph.lu@mail.utoronto.ca).

Mar
15
Wed
LLE: The Role and Contribution of Engineers in Addressing Global Nutrition Challenges – Experiences From the Field (Rizwan Yusufali, UNICEF) @ WB116
Mar 15 @ 12:00 pm – 1:00 pm

Rizwan Yusufali, UNICEF

Host: Prof. Levente Diosady

From urban centers to remote corners of Earth, the depths of the oceans to space, humanity has always sought to transcend barriers, overcome challenges, and create opportunities that improve life on our part of the universe. One such challenge is securing good nutrition for the global population, many of whom have just a few dollars a day to secure a nutritious meal. Nutrition is a ‘Grand Challenge’ affecting the world’s most vulnerable populations and needs a multidisciplinary approach and a ‘new breed’ of Engineers that can transcend across multiple disciplines and apply their analytical and solution-oriented thinking. While Engineers have and continue to develop ingenious solutions and technologies to make food healthier and safer, global rates of malnutrition remain unacceptably high in many countries resulting in productivity losses, morbidity and mortality. The aim of my lecture is to share some of my experiences and perspectives that have enabled me to make a positive impact on nutrition with the hope that this may inspire engineering researchers and students to solve the world’s most stubborn problems.
_____

Rizwan Yusufali is a Nutrition Specialist at UNICEF providing technical and advisory support on scaling up essential nutrition interventions with a specific focus on food fortification and food systems. Mr. Yusufali has held several positions in program management, operations and product development and has extensive experience in food fortification. Prior to joining UNICEF, Mr. Yusufali was the Regional Director for the Strengthening African Processors of Fortified Foods program at TechnoServe providing direction, leadership and technical support covering Nigeria, Kenya and Tanzania. He has also worked for the World Food Programme (WFP), Global Alliance for Improved Nutrition (GAIN), Micronutrient Initiative (MI) managing programs in several countries across Africa and Asia. Mr. Yusufali has a Masters Degree in Chemical Engineering from the University of Toronto and has several publications on food fortification.

 

View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber (jay.werber@utoronto.ca) or Sophia Lu (soph.lu@mail.utoronto.ca).

Mar
29
Wed
LLE: Education in Engineering Lecture: New Directions for Chemical Engineering (Eric Kaler, Case Western Reserve University) @ WB116
Mar 29 @ 12:00 pm – 1:00 pm

Education in Engineering Lecture

Co-hosted with the Institute for Studies in Transdisciplinary Engineering Education & Practice (ISTEP)

Eric Kaler, Case Western Reserve University

Host: Prof. Krishna Mahadevan

I will describe the outcomes of a US National Academies (NA) study I chaired called “New Directions for Chemical Engineering.”  As described by the NA Press, it “details a vision to guide chemical engineering research, innovation, and education over the next few decades. This report calls for new investments in U.S. chemical engineering and the interdisciplinary, cross-sector collaborations necessary to advance the societal goals of transitioning to a low-carbon energy system, ensuring our production and use of food and water is sustainable, developing medical advances and engineering solutions to health equity, and manufacturing with less waste and pollution. The report also calls for changes in chemical engineering education to ensure the next generation of chemical engineers is more diverse and equipped with the skills necessary to address the challenges ahead.
_____

Eric W. Kaler is the president of Case Western Reserve University. He joined Case Western Reserve in July 2021 from the University of Minnesota, where he served as university president for eight years. An accomplished chemical engineer and visionary university leader, Kaler’s career in higher education spans more than 40 years. He has significant expertise in elevating research, expanding fundraising, forming collaborative partnerships, encouraging entrepreneurship, and advocating for diversity, equity and inclusion.

Kaler studies surfactant and colloid science and engineering. His work on these ‘complex fluids’ has implications for many processes and products, ranging from pharmaceutical formulations to personal care products to enhancing oil-field production. He has published over 200 papers and holds 10 U.S. Patents and is a member of the National Academy of Engineering (2010). He was elected as a fellow of the American Academy of Arts and Sciences (2014) for his leadership in engineering and in higher education. He was a member of the inaugural class of the National Academy of Inventors (2012). He also is a fellow of the American Association for the Advancement of Science and the American Chemical Society.

Born in Vermont, Kaler is a first-generation college graduate who earned his bachelor’s degree in chemical engineering from the California Institute of Technology and his PhD in chemical engineering from the University of Minnesota.

 

View the complete 2022-23 LLE schedule

Questions? Please contact Professor Jay Werber (jay.werber@utoronto.ca) or Sophia Lu (soph.lu@mail.utoronto.ca).

© 2022 Faculty of Applied Science & Engineering