Department Calendar of Events

Sep
13
Wed
Research Seminar: Digitizing the Chemical Sense: Building a Primary Odor Map to Encode and Predict Olfactory Percepts @ WB215; Teams
Sep 13 @ 11:00 am – 12:00 pm

Headshot of Benjamin Sanchez-Lengeling

Benjamin Sanchez-Lengeling
Research Scientist, Google Deepmind

Abstract:Properties of the physical world come to life through our human senses, digitizing these senses allows us to catalog, search and design percepts. We have made remarkable progress in the domain of vision, hearing, but what about the rest? Olfaction is a chemical sense, and in this talk, I will present our recently published work on how we built a digital representation of olfaction for single compounds, which we call the Primary Odor Map and can be used in a variety of olfactory tasks. To validate our representation, we selected a set of 400 novel and diverse molecules with no known recorded scent and had them rated by a panel of trained humans. We compared our predicted olfactory profiles with the panel consensus response and found that our machine learning model outperforms any single human in the panel. The story will touch on deep learning, molecular representations, compound discovery pipelines, training humans to reliably rate odor percepts, as well as diverse applications of a principal odor map.

Speaker Bio: Benjamin Sanchez-Lengeling is a researcher at Google DeepMind, solving chemical problems leveraging data-driven techniques. Ben designs, builds, and evaluates computational tools that enable molecular discoveries, covering small molecules, polymers, chemical mixtures, and proteins.  Striving to bring computational predictions into the lab by designing experimental validation with collaborators, prioritizing the interpretation of our discoveries, and making research clear and approachable. Ben graduated with a Ph.D. in Chemistry and Chemical Biology and a secondary field in Computational Science & Engineering from Harvard University under the supervision of Alán Aspuru Guzik. Besides research, he is also passionate about science education and divulgation. He is one of thefounders and organizers of a STEM-education NGO Clubes de Ciencia Mexico and a LatinX-centered AI conference RIIAA.

Microsoft Teams meeting

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 214 767 653 586
Passcode: jAZajt

Download Teams | Join on the web

Or call in (audio only)

+1 647-794-1609,,970944516#   Canada, Toronto

Phone Conference ID: 970 944 516#

Find a local number | Reset PIN

Learn More | Meeting options

Sep
20
Wed
Research Seminar: Accelerating drug discovery with quantum chemistry, machine learning, and molecular dynamics @ WB215; Teams
Sep 20 @ 10:00 am – 11:00 am

Headshot of Simon Axelrod

Simon Axelrod
PhD, Harvard University

Abstract:Light-activated drugs are a promising way to treat localized diseases for which existing treatments have severe side effects. However, their development is complicated by the set of photophysical and biological properties that must be simultaneously optimized. For example, photoactive drugs based on transcis isomerization must isomerize under light, absorb in the near-IR, have reasonably long cis lifetimes, and have differential cistrans binding to a protein target. To accelerate the design of photoactive drugs, we develop new computational methods for predicting their properties. These techniques combine atomistic simulation with machine learning based on quantum chemistry. They enable the prediction of the isomerization efficiency, absorption spectrum, thermal half-life, and binding affinity. We use these tools to screen 5 million hypothetical ligands for the photoactive inhibition of the PARP1 cancer target. We identify several compounds with redshifted absorption spectra, ideal thermal half-lives, and differential protein binding under illumination. These results show that computation can help address the difficult optimization problem that is central to photoactive drug design.

Speaker Bio: Simon Axelrod received his BSc at Queen’s University in 2016, with a major in Physics. He received his MSc in Physics at the University of Toronto in 2017. He worked under Prof. Paul Brumer in the Chemistry department, developing theoretical models for understanding quantum effects in biology.  He received his PhD in Chemical Physics from Harvard University in 2023. He worked under Prof. Eugene Shakhnovich (Chemistry) and Prof. Rafael Gomez-Bombarelli (Materials Science and Engineering, MIT), combining atomistic simulation with machine learning to accelerate drug discovery. In his spare time, Simon likes playing basketball, joking around with friends, and writing short bios.

Microsoft Teams meeting

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 286 709 570 145
Passcode: PNVyQv

Download Teams | Join on the web

Or call in (audio only)

+1 647-794-1609,,882188598#   Canada, Toronto

Phone Conference ID: 882 188 598#

Find a local number | Reset PIN

Learn More | Meeting options

LLE: “Green” Electronics: From Sustainable Materials to Cannabinoid Sensors (Benoit Lessard, University of Ottawa) @ Sandford Fleming Building, Room 1105
Sep 20 @ 11:00 am – 12:00 pm

Benoit Lessard, University of Ottawa

Host: Prof. Tim Bender

Our society is faced with an increasing challenge of E-waste, and with the proliferation of the internet of things and smart packaging, this is only going to get worse. Low cost printed electronics are facilitating the development of emerging technologies, from artificial skin to stretchable and bendable cell phone displays. The desire to integrate these materials onto biodegradable substrates or to use compostable active materials is necessary. Furthermore, the chemical toolbox available to us enables the fine-tuning of the materials to design and engineer the desired properties. This seminar will cover our groups recent advances in the simple fabrication of semiconductive single walled carbon nanotube transistors on high performing green dielectrics, advances towards the development of biodegradable and flexible transparent heaters, and the use of phthalocyanines as low cost semiconductors for the development of point-of-source sensors such as cannabinoid detection and speciation. We aim to build structure property relationships between material design, thin film processing, and device performance for the enabling of sustainable next-generation electronics.

_____

Professor Benoit Lessard joined the Department of Chemical & Biological Engineering at the University of Ottawa in 2015 as an Assistant Professor, was promoted to Associate Professor in May 2019, and Cross Appointed to the School of Electrical Engineering and Computer Science in 2020.  He was awarded the Tier 2 Canada Research Chair in Advanced Polymer Materials and Organic Electronics (renewed in 2020), 2018 Ontario Early Researcher Award, the 2015 Charles Polanyi Prize in Chemistry, The University of Ottawa Early Career Researcher of the Year Awards for 2021, the 2021 Chemical Engineering Innovation award (under 40), 2022 The Canadian Journal of Chemical Engineering Lectureship award and NOVA Chemicals MSED Early Career Investigator Award. Prof. Lessard was also named a 2018 J. Mater. Chem. C Emerging Researcher (RSC), Flexible and Printed Electronics Emerging Leaders of 2023 (IOPscience) and 2023 “Small” Nano Micro Rising Star (Wiley Journals).

Since 2008, Prof. Lessard has published 147 peer reviewed journal articles, 16 patent applications, and presented his work over 150 times at international and national conferences. Lessard is co-founder of Ekidna Sensing inc, a spinoff company based on cannabinoid sensors. Prior to joining uOttawa, Prof. Lessard completed an NSERC Banting Fellowship at the University of Toronto studying crystal engineering and OPV/OLED fabrication and obtained his PhD (2012) from McGill University in Polymer reaction engineering.

 

View the complete 2023-24 LLE schedule

Questions? Please contact Michael Martino, External Relations Liaison (michael.martino@utoronto.ca)

Sep
27
Wed
Seminar: The engineering of functional biomimetic surfaces by femtosecond laser micromachining @ Myhal Centre, room MC331
Sep 27 @ 10:00 am – 11:00 am

Headshot of Professor Anne KietzigProfessor Anne Kietzig
McGill University (Department of Chemical Engineering

Abstract: Functional surfaces in nature are often characterized by patterns of similar multi-length scale surface features of regular but random geometry. In science and engineering we prefer precise feature geometries that are accessible by mathematical formulations for kinetic and thermodynamic considerations. Femtosecond (fs) laser machining has emerged in the past decades as a versatile material processing technique which requires only one single process step to induce specific microfeatures that entail surface functionality. There is no limit to the material type that can be machined with lasers, however, the topological outcome is a direct response dictated by the respective material’s properties. Next to altering the surface topology of materials, laser irradiation also often causes changes in a surface’s chemistry, which upon understanding the underlying reaction mechanism can be exploited to tailor surface wetting and adhesion properties. This talk will provide an overview of our advances in exploiting laser-matter interactions to address various applications. Examples range from much discussed plant-leaf inspired non-wetting, to pitcher plant inspired directional and extreme wetting, shark skin-like drag reducing surfaces, easy flow surfaces and textured glass surfaces that change their opacity upon wetting like the “skeleton” flower, penguin-feather inspired ice-shedding and tailored adhesion of epoxy-metal bonds.

 

Speaker Bio: Anne Kietzig is a Professor at McGill University, Canada. She teaches and carries out research at the Department of Chemical Engineering and acts as Associate Dean for Student Affairs in the Faculty of Engineering. She started her undergraduate education of Chemical Engineering and Economy Studies at the Technical University of Berlin, Germany, where she graduated in 2006. She pursued her doctoral studies focused on microscopic ice friction at the Department of Biological and Chemical Engineering at the University of British Columbia in Vancouver, Canada. In 2010, she joined McGill as an Assistant Professor, where she leads a research program in Biomimetic Surface Engineering, which is built on two fundamental pillars: one being laser-material-interactions and the other being surface wetting. The fields of application are manifold and target tailoring optical properties, adhesion, drag, and friction on many materials.

Oct
4
Wed
LLE: Design of Self-Organizing Protein Architectures as Functional Biomaterials (Claudia Schmidt-Dannert, University of Minnesota) @ Sandford Fleming Building, Room 1105
Oct 4 @ 11:00 am – 12:00 pm

Claudia Schmidt-Dannert, University of Minnesota

Host: Prof. Emma Master

In biological systems, simple building blocks such as proteins, nucleic acids and lipids are precisely organized to form higher ordered structures across multiple length scales. Harnessing the principles and mechanisms underlying the self-assembly and self-organization of natural structures and materials offers tremendous opportunities for the design and scalable fabrication of functional biomaterials with emergent properties. Proteins and peptides provide the greatest versatility for the bottom-up design and low-cost production of such self-assembling supramolecular materials due to the chemical diversity of their amino acid building blocks. They are also genetically encoded, allowing for the genetically programmable production of self-organizing materials using cell factories or synthesize self-assembling materials de novo via cell free expression systems. Proteins are also key players in the formation of inorganic-organic composite materials with properties unmatched by synthetic properties. Inspired by the spatial organization of enzymes at the subcellular level via protein nanostructures, we are taking advantage of these mechanisms for the design of self-assembling protein-based nano-architectures for different applications, including for in vitro biocatalysis and the fabrication of new types of functional materials. Of key interest to us is the discovery and design of mechanisms with which to interface protein-based materials with biomineralization processes to produce innovative materials with unique mechanical and other properties. I will discuss possibilities and examples from our work for the design of genetically encoded self-assembling 2D and 3D-protein scaffolds as functional materials for diverse applications, including for biocatalysis and biosynthesis and as living materials.

_____

Dr. Claudia Schmidt-Dannert is a Distinguished McKnight Professor and Kirkwood Chair of Biochemistry in the Dept. of Biochemistry and the Director of the Biotechnology Institute at the University of Minnesota.

She completed her B.S. and M.S. in Biochemistry and Genetics at the TU Braunschweig and performed her PhD research at the National Research Center for Biotechnology in Braunschweig (GBF, now Helmholtz Center for Infectious Diseases). She then moved to the University of Stuttgart and became group leader of the Molecular Biotechnology Group in the Institute of Technical Biochemistry (Rolf Schmid group). In 1998, she received a Habilitation Fellowship from the German Science Foundation for “molecular breeding of pathways” and with this project, joined Prof. Arnold’s group at Caltech. In 2000, she joined the faculty at the University of Minnesota.

Current research efforts in her group focus on using synthetic biology approaches for the design of genetically programmable materials for biosynthesis, biocatalysis and other applications, including the fabrication of living materials. Another area of expertise in her group is in the engineering of different microbial chassis organisms to produce valuable chemicals. Dr. Schmidt-Dannert has published numerous manuscripts, patents, and book chapters; serves as Editor and board member of several journals and received several awards such as a David and Lucile Packard Fellowship and McKnight Fellow- and Professorships.

 

View the complete 2023-24 LLE schedule

Questions? Please contact Michael Martino, External Relations Liaison (michael.martino@utoronto.ca)

Oct
18
Wed
Seminar: Renewably-powered CO2 Capture and Conversion @ WB215
Oct 18 @ 10:00 am – 11:00 am

Headshot of David Sinton

David Sinton

Professor, Canada Research Chair

Department of Mechanical & Industrial Engineering | University of Toronto

 

Abstract

The capture and conversion of CO2 – when powered by renewable electricity – presents an opportunity to reduce emissions and de-carbonize the production of fuels and chemicals. These processes will require electrocatalytic systems that provide reactants, electrons, and products at high rate and efficiency, and that are compatible with established upstream and downstream processes. In this talk I will outline our progress on electrochemical systems to meet this challenge. To enable renewably-powered CO2 capture, we have developed an electrochemical capture fluid regeneration strategy that circumvents the thermal process, and associated emissions, of the incumbent system. To convert the captured CO2 we develop a cascade approach, with CO2-to-CO followed by CO-to-products. I’ll close with a discussion on the challenges ahead for the field to achieve commercial viability, stability and scale.

Speaker Bio

David Sinton is a Professor and Canada Research Chair in the Department of Mechanical & Industrial Engineering at the University of Toronto. He is the Academic Director of the Climate Positive Energy Initiative. Prior to joining the University of Toronto, Dr. Sinton was an Associate Professor and Canada Research Chair at the University of Victoria, and a Visiting Associate Professor at Cornell University. He received a BASc from the University of Toronto, MEng from McGill University and his PhD from the University of Toronto. The Sinton group develops fluid systems for applications in energy. The group is application-driven and is currently developing fluid systems for CO2 capture and conversion and to develop energy efficient industrial working fluids.

 

Microsoft Teams meeting

Join on your computer, mobile app or room device

Click here to join the meeting

Meeting ID: 250 984 765 478
Passcode: eoTAAE

Download Teams | Join on the web

Or call in (audio only)

+1 647-794-1609,,727760986#   Canada, Toronto

Phone Conference ID: 727 760 986#

Find a local number | Reset PIN

Learn More | Meeting options

LLE: Assessing Exposures and Health Effects of Particle Radioactivity: An Emerging Research Field (Petros Koutrakis, Harvard University) @ Sandford Fleming Building, Room 1105
Oct 18 @ 11:00 am – 12:00 pm

Petros Koutrakis, Harvard University

Host: Prof. Jeffrey Brook

The recent Global Burden of Disease (GBD) study estimated that long-term exposure to fine particulates (PM2.5) caused 9 million deaths worldwide in 2019, making it the fourth-ranked global risk factor for that year. The PM properties responsible for its toxicity are still not fully understood. Recently, we found that radon (Rn) exposure is associated with mortality in the Northeastern U.S., and we have reported associations between PM gross β-activity and blood pressure, oxidative stress, and lung and cardiac function. A large fraction of the total exposure to naturally occurring ionizing radiation is through inhalation of ambient particles carrying attached radionuclides. The primary source of this PM radioactivity (PR) is Radon (Rn) gas through its decay products. Rn emanates from the soil and enters the atmosphere, including indoor air, where it decays. The resulting radionuclides attach to inhalable PM, which deposit in the lungs and continue to release ionizing radiation (α-, β- and γ-radiation) causing pulmonary inflammation and oxidative stress. To date, most previous environmental radiation studies have focused on the cancer effects of Rn progeny, therefore, there are significant knowledge gaps regarding the non-cancer effects of radon and PR. Our recent research has demonstrated that these non-cancer effects are, in fact, very important. Specifically, we have generated new information showing that exposures to Rn as well as PM gross α-, β- and γ-activities are associated with numerous adverse health outcomes, including blood pressure, oxidative stress, cardiac, lung and liver function, gestational diabetes and hypertension, and total and cardiopulmonary mortality.

These observations provide strong scientific evidence for our hypothesis that inhaled Rn progeny and other radionuclides, measured as PR, can have direct health effects through stimulation of inflammatory and oxidative processes. Therefore, assessing exposures and effects of PR may be of paramount importance to understanding of particle toxicity. During my presentations I will summarize many PR studies regarding measurement methods, sources, relationships between indoor and outdoor levels and, toxicity assays. Also, I will present results from cohort studies examining a large spectrum of health outcomes and population mortality studies. Finally, I will discuss research needs to advance this emerging research area.

_____

Petros Koutrakis has over 35 years of experience in environmental health sciences. His interests include human exposure assessment, ambient and indoor air pollution, environmental analytical chemistry, remote sensing, and environmental radioactivity. His research career has focused on studying exposure methods, developing sampling techniques for gaseous and particulate air pollutants, and studying the effects of air pollution on human health. His research group has conducted a large number of ambient and indoor air quality studies in the U.S. and abroad. These studies made it possible to identify and quantify the sources contributing to ambient, micro-environmental and indoor exposures. Finally, these investigations significantly advanced scientific knowledge of associations between exposures and health outcomes and made important contributions to assessments of the impacts of air pollution on human health in different populations.

 

View the complete 2023-24 LLE schedule

Questions? Please contact Michael Martino, External Relations Liaison (michael.martino@utoronto.ca)

Nov
29
Wed
LLE: Re-imagining Manufacturing: Building a Circular Gas Fermentation Industry (Michael Koepke, LanzaTech) @ Sandford Fleming Building, Room 1105
Nov 29 @ 11:00 am – 12:00 pm

Michael Koepke, LanzaTech

Host: Prof. Christopher Lawson

The accelerating climate crisis combined with rapid population growth poses some of the most urgent challenges to humankind, all linked to the unabated release and accumulation of CO2 and waste across the biosphere. Rapid action is needed to drastically reduce waste carbon emissions. By harnessing our capacity to partner with biology, we can begin to take advantage of the abundance of available CO2 and waste carbon streams to transform the way the world creates and uses carbon and enable a circular economy.

LanzaTech’s mission is to create a post-pollution future where waste carbon is the building block from which everything is made and since inception in 2005 has pioneered the development of a gas fermentation for carbon-negative biomanufacturing. Gas fermentation using carbon-fixing microorganisms is a fully commercial carbon recycling process technology that transforms above-ground sustainable and waste carbon resources into fuels, chemicals, materials and nutritional products at a scale that can be truly impactful in mitigating the climate crisis. LanzaTech’s technology is like retrofitting a brewery onto an emission source like a steel mill or a landfill site, but instead of using sugars and yeast to make beer, pollution is converted by bacteria to fuels and chemicals. The technology offers an industrial approach to both enable manufacturing at its current scale, and achieve sustainability targets.

Compared to other gas-to-liquid processes, gas fermentation offers unique feedstock and product flexibility. The process can handle a diverse range of high volume, low-cost feedstocks. These include industrial emissions (e.g., steel mills, processing plants or refineries) or syngas generated from any resource (e.g., unsorted, and non-recyclable municipal solid waste, agricultural waste, or organic industrial waste), as well as CO2 with green hydrogen.

Only 15 years ago, carbon-fixing microbes were poorly understood and considered to be genetically inaccessible and gas mass-transfer seen as major hurdle. To unlock this biology for industrial use, LanzaTech has developed a state-of-the-art Synthetic Biology and AI platform as well as advanced bioprocessing and bioreactor technology. Today, LanzaTech has 3 commercial plants in operation, >500 chemical pathways designed and >300,000 tons of CO2 mitigated. This lecture will provide an insight into the LanzaTech journey from scrappy start-up to global technology leader through the commercialization of its gas fermentation process as a platform, and give a perspective on the future for the industry at large.

_____

Dr. Michael Köpke is the Chief Innovation Officer at LanzaTech ($LNZA), a public company that uses biology to capture and transform carbon into sustainable products. Michael is a pioneer in synthetic biology of CO2-fixing microbes and carbon-negative biomanufacturing with 20 years of experience in the industrial biotech field. Since joining LanzaTech in 2009, Michael built up the company’s synthetic biology and computational biology capabilities and is responsible for LanzaTech’s innovation platform and technology partnerships.

Michael holds a Ph.D. in biotechnology from University of Ulm and is an inventor of over 500 patents and author of more than 50 peer-reviewed publications. Michael is also an awardee of the Presidential Green Chemistry Challenge award for Greener Synthetic Pathways by the U.S. Environmental Protection Agency (EPA).

In addition to his role at LanzaTech, Michael also serves as an adjunct faculty position at Northwestern University and as council member at the Engineering Biology Research Consortium (EBRC). At EBRC, Michael chairs the roadmapping working group and led the development of a technical roadmap on synthetic biology solutions for climate and sustainability as part of a group of over 90 scientists and other experts. Michael also serves on several editorial or scientific boards and chaired several workshops and international conferences.

 

View the complete 2023-24 LLE schedule

Questions? Please contact Michael Martino, External Relations Liaison (michael.martino@utoronto.ca)

Dec
6
Wed
LLE: Dynamic Operating Schema for Resilient, Affordable, Decarbonized Water Systems (Meagan Mauter, Stanford University) @ Online via Zoom
Dec 6 @ 11:00 am – 12:00 pm

Meagan Mauter, Stanford University

Host: Prof. Frank Gu

Dynamic operating schema for unit processes, treatment trains, and water systems are critical for accommodating non-steady-state system inputs and water resource demands. This applies equally to small-scale treatment units with fluctuating water production volumes and quality, large desalination plants encountering energy costs that vary as much as 10X over hourly and seasonal time scales, and entire water systems that are subject to multi-year droughts of varying intensity, persistence, and duration.  This talk will discuss the paradigm shift from steady state to dynamic system operation over multiple time domains and the resulting demands this shift places on membrane-based water treatment technologies.  The talk will then turn to how to leverage native flexibility in both traditional reverse osmosis (RO) technologies and emerging dynamically operated technologies (e.g., batch RO) for maximal system resiliency.  Finally, this talk will address open research questions critical to characterizing the financial value of flexibility in process, treatment train and system design and motivating an expanded dynamic operational range across these systems.

_____

Professor Meagan Mauter is an Associate Professor of Civil & Environmental Engineering and Global Environmental Policy at Stanford University and Senior Fellow in the Precourt Energy Institute and Woods Institute for the Environment. She directs the Water & Energy Efficiency for the Environment Lab (WE3Lab) with the mission of providing sustainable water supply in a carbon-constrained world.  Ongoing research efforts include: 1) developing desalination technologies to support a circular water economy, 2) coordinating operation of decarbonized water and energy systems, and 3) supporting the design and enforcement of water-energy policies.

Professor Mauter also serves as the research director for the National Alliance for Water Innovation, a $110-million DOE Hub addressing U.S. water security issues. The Hub targets early-stage research and development of energy-efficient and cost-competitive technologies for distributed desalination of non-traditional source waters.

Professor Mauter holds bachelors degrees in Civil & Environmental Engineering and History from Rice University and a PhD in Chemical & Environmental Engineering from Yale University. Prior to joining the faculty at Stanford, she served as an Energy Technology Innovation Policy Fellow at the Belfer Center for Science and International Affairs, Visiting Scholar at the Mossavar Rahmani Center for Business and Government at the Harvard Kennedy School of Government, and Associate Professor at Carnegie Mellon University.

 

View the complete 2023-24 LLE schedule

Questions? Please contact Michael Martino, External Relations Liaison (michael.martino@utoronto.ca)

Jan
17
Wed
LLE: Building a Sustainable Future through Bio-based Chemicals and Nanomaterials (Ning Yan, University of Toronto) @ WB116
Jan 17 @ 11:00 am – 12:00 pm

Ning Yan, University of Toronto

Host: Prof. Grant Allen

As we move towards UN Sustainable Development Goals, there is a growing interest to produce chemicals and materials from renewable feedstock to lower our reliance on fossil fuels. Over the years, my research team has developed a portfolio of bio-based chemicals and industrial materials using natural polymers as the building block. By taking advantage of some distinctive properties of cellulose, lignin, starch, and other plant-based biomolecules, we have designed and engineered bio-based resins, adhesives, polyols, foams, and composites suited for applications in automotive, construction, packaging, energy storage, and wearable electronics. By integrating dynamic bonds in the molecular structure, we have achieved designed close-loop recyclability of various bio-based covalent adaptable network (CAN) materials using starch, chitosan, and lignin as precursors. This new class of self-healing, recyclable, and reprocessable bio-based vitrimer materials can help extend product service life, reduce landfill plastic wastes, and realize the circular economy concept. An overview of some latest findings from our research activities will be presented.

_____

Professor Ning Yan holds a Tier 1 Canada Research Chair in Sustainable Bioproducts at the University of Toronto. She has also held a University of Toronto Distinguished Professorship in Forest Biomaterials Engineering and an Endowed Chair in Value Added Wood and Composites previously. Professor Yan is an internationally renowned expert in bio-based materials, green chemistry, and biopolymer science with more than 200 peer-reviewed publications in leading scientific journals. She is currently an associate editor of ACS Sustainable Chemistry and Engineering journal. Professor Yan obtained her PhD degree in Chemical Engineering from the University of Toronto in 1997 and joined the University of Toronto as a faculty member in 2001 after working for various companies in Canada and United States. She is an elected Fellow of the Engineering Institute of Canada (EIC), International Academy of Wood Science (IAWS), and the Canadian Academy of Engineering (CAE).

 

View the complete 2023-24 LLE schedule

Questions? Please contact Michael Martino, External Relations Liaison (michael.martino@utoronto.ca)