Department Calendar of Events

Jul
11
Thu
SEMINAR: 3D Printing of Drug Eluting Polymeric Medical Devices (Dr. Jean-Christophe Leroux, ETH Zürich) | PRiME Connaught Global Speaker Series @ Red Seminar Room, Terrence Donnelly Centre
Jul 11 @ 11:00 am – 12:00 pm

Dr. Jean-Christophe Leroux
Full Professor at the Department of Chemistry and Applied Biosciences
Deputy Head of Institute of Pharmaceutical Sciences, ETH Zürich

Abstract

Three-dimensional (3D) printing is a versatile technology enabling the cost-effective production of personalized medical devices. Among various 3D printing methods, digital light processing (DLP) stands out for its ability to rapidly create objects with high precision. However, the fabrication of bioresorbable medical devices using DLP is in part limited by the limited choice of suitable biomedical inks. In this study, we developed innovative polyester-based inks enabling DLP printing of therapeutic devices with adjustable mechanical characteristics and degradation profiles. The most promising materials were utilized to design biodegradable customized airway stents. These stents degraded into soft hydrogels in vitro and completely disappeared seven weeks after insertion in rabbits. Additionally, the 3D printed stents could be loaded with drugs like levofloxacin or nintedanib, and their release kinetics could be tailored by modifying the copolymer composition. Furthermore, we engineered near-infrared (NIR) light-responsive stents containing gold nanorods using tunable ink compositions. This allowed for the creation of shape-memory stents that expand upon NIR light activation, facilitating easy deployment. Lastly, DLP served as a prototyping method for the fabrication and optimization of mucosal suction patches investigated for transbuccal drug delivery. These studies open new perspectives for the rapid manufacturing of complex devices with superior properties.

Speaker Bio

Jean-Christophe Leroux is a full professor of Drug Formulation and Delivery at the Institute of Pharmaceutical Sciences at the ETH Zurich, Switzerland. He has made important fundamental and applied contributions to the fields of biomaterials and drug delivery and has been involved in the development of innovative bio-detoxification systems for the treatment of metabolite disorders. He is a fellow of the AAPS, EURASC, French Academy of Pharmacy, and the CRS, and the co-founder of the start-up pharmaceutical companies Versantis AG, Inositec AG and OBaris AG.

Jul
19
Fri
SEMINAR: Self-assembly of Multiple Functional Biomaterials for Food-Water-Energy Nexus (Dr. Zhaohui (Julene) Tong, Georgia Institute of Technology) @ ES1016B
Jul 19 @ 10:00 am – 11:00 am

Abstract

Bioresource materials such as cellulose, chitin, and lignin, are usually low-cost, biocompatible, and abundant in nature. The synthesis of functional materials from these bioresource materials can address long-term challenges in Food-water-Energy Nexus, such as resource and energy depletion, food security, water scarcity, and climate change. However, the adaption of chemical functionalization and self-assembling methodologies to renewable resource materials for functional materials is very challenging due to their macromolecular structures, heterogeneous properties, poor solubility, and the disturbance of impurities. In this talk, we will summarize how we explore self-assembly methods to produce new nanostructures and endure new functions for renewable resource materials. Several examples will be discussed. For example, glycerol, a biowaste from the biodiesel process, has been assembled into a nano-core-shell structure for a smart food packaging film sensor for universal real-time food spoilage monitoring. Biomass waste or cellulose can be assembled as multiple-function controlled-release fertilizers and smart membranes. Ultimately, we would like to use these self-assembly nanostructures from renewable resources to achieve a high-efficiency circular bioeconomy.

Speaker Bio

Dr. Tong has been an Associate Professor and James C. Barber Faculty Fellow in the School of Chemical and Biomolecular Engineering at Georgia Tech since January 2022. She is also the initiative leader in waste valorization in the food-water-energy nexus of the Renewable Bioproduct Institute (RBI). Previously, she served as an assistant and associate professor since 2010 at the University of Florida. She earned her Ph.D. in chemical engineering from Georgia Tech in 2007, followed by work at Ch2M Hill until 2009. Tong’s research focuses on synthesizing functional sustainable materials and catalytical conversion for biochemicals and biofuels from renewable resources. She has published 73 journal papers and 4 patents. Her research has been supported by NSF, USDA, NAS, and DOE. She secured about $5 million in grants after joining Georgia Tech in 2022. Dr. Tong has also served as an associate editor for three journals and held leadership roles in AIChE.